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Context: To date, few systems genetics studies in the bone field have been performed. We designed
our study from a systems-level perspective by integrating genome-wide association studies
(GWASs), human protein-protein interaction (PPI) network, and gene expression to identify gene
modules contributing to osteoporosis risk.

Methods: First we searched for modules significantly enriched with bone mineral density (BMD)-
associated genes in human PPI network by using 2 large meta-analysis GWAS datasets through a
dense module search algorithm. One included 7 individual GWAS samples (Meta7). The other was
from the Genetic Factors for Osteoporosis Consortium (GEFOS2). One was assigned as a discovery
dataset and the other as an evaluation dataset, and vice versa.

Results: In total, 42 modules and 129 modules were identified significantly in both Meta7 and
GEFOS2 datasets for femoral neck and spine BMD, respectively. There were 3340 modules iden-
tified for hip BMD only in Meta7. As candidate modules, they were assessed for the biological
relevance to BMD by gene set enrichment analysis in 2 expression profiles generated from
circulating monocytes in subjects with low versus high BMD values. Interestingly, there were
2 modules significantly enriched in monocytes from the low BMD group in both gene expres-
sion datasets (nominal P value �.05). Two modules had 16 nonredundant genes. Functional
enrichment analysis revealed that both modules were enriched for genes involved in Wnt
receptor signaling and osteoblast differentiation.

Conclusion: We highlighted 2 modules and novel genes playing important roles in the regu-
lation of bone mass, providing important clues for therapeutic approaches for osteoporosis.
(J Clin Endocrinol Metab 99: E2392–E2399, 2014)

Osteoporosis is a skeletal disease characterized by a
reduction in bone mass and diagnosed through

measurement of bone mineral density (BMD). Low
BMD is associated with increased risk of osteoporotic
fracture (1). BMD variation is under strong genetic con-
trol with heritability (h2) estimates ranging from 0.5 to
0.9 (2). In recent years, more than 15 genome-wide as-

sociation studies GWASs have identified more than 60
genes/loci associated with BMD (3). However, such
conventional GWASs focus on disease-associated sin-
gle-nucleotide polymorphisms (SNPs) at genome-wide
significance level (eg, P � 5 � 10�8), which explains
only a small proportion of genetic risks. To search for
missing heritability and enhance our understanding of
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biological mechanisms, several advanced approaches
have been developed.

The network-assisted GWAS has been developed by
incorporating protein-protein interaction (PPI) networks
into GWASs to search for groups of functional related
genes whose protein products interact with one another.
The rationale behind this approach is the principle of
“guilt by association” (4), which states that genes (or gene
products) interconnected in the network are more likely to
share the same or similar function (5). Inspirationally, the
network-assisted method has been successfully applied to
multiple complex diseases, including autoimmune and
neurological diseases (6–9).

The advantages of network-assisted GWAS are as fol-
lows. First, it can improve power, because the annotations
of PPI data cover a much larger proportion of human pro-
teins than predefined gene sets. For example, the human
PPI network may recruit �10 000 proteins and �60 000
protein interaction pairs with experimental evidence (10).
However, the popular KEGG database has �200 path-
ways, covering only 5000 to 5500 genes, accounting for
less than 30% of genes in GWAS datasets (6). Therefore,
the association signals from GWAS may converge on only
part of the pathway, resulting in loss of power. Second,
network-assisted methods can define de novo gene sets,
which may collectively contribute to disease risk, by dy-
namically searching for subnetworks in the whole inter-
actome (9). Predefined gene sets covered by current an-
notations limit the analysis by their fixed sizes and may be
too general for their roles in disease-related biological
functions (11).

As an emerging and novel approach, systems genetics
has been applied to complex diseases from a systems-level
perspective to determine how genetic variations perturb
cellular systems and ultimately disease (12). In a systems
genetics study, data from genome, transcriptome, epig-
enome, proteome, metabolome, and interactome will be
analyzed using a suite of analytical approaches including
GWAS and network analysis (13). The network analysis
may represent the first statistical step in systems genetics
to identify multiple genetic perturbations, which alter the
states of molecular networks and therefore form systems
into disease states (14). By integrating high dimensional
biological data from multiple sources, systems genetics
provides a global view of the molecular architecture of
complex traits and greatly enhances the identification of
genes, pathways, and networks as key drivers of complex
diseases (15).

Inspired by recent pioneering systems genetics studies
in the bone field (16, 17), the present study applied systems
genetics approach in its own way by integrating GWASs,
human PPI network, and gene expression to identify gene

modules contributing to osteoporosis risk. We highlighted
2 modules as well as novel genes in modules playing im-
portant roles in the regulation of BMDs.

Materials and Methods

GWAS dataset
The first dataset was from an imputation-based meta-analysis

(referred to as Meta7), including 7 individual GWAS samples,
which consisted of a total of 11 140 individuals with BMDs at
lumbar spine (SPN), hip, and femoral neck (FN) measured by
dual-energy x-ray absorptiometry (DXA) scanners. Details of
this dataset are provided in Ref. 18. Briefly, each GWAS sample
was genotyped by high-throughput SNP genotyping array. Each
individual GWAS sample was imputed by the relevant popula-
tion’s reference haplotypes in the 1000 genomes project
(1000G). SNPs with high accuracy in at least 2 samples and
minor allele frequency �0.05 in at least 1 sample were included
in the association analysis. In unrelated GWAS samples, the lin-
ear regression model was used in MACH2QTL to examine the
association between BMDs and allele dosages as the predictor
(19). In familial GWAS samples, a mixed linear model was used
in which the effect of genetic relatedness within each pedigree
was also taken into account. Genomic control inflation factor
was estimated for each individual GWAS. Weighted fixed-effect
meta-analyses were performed in METAL to combine summary
statistics of associations from each GWAS. Cochran’s Q statistic
and I2 were calculated by METAL as measures of between-study
heterogeneity (20). Random-effects meta-analyses were per-
formed on those SNPs with a Q P value less than .05 or I2 value
higher than 50%. In total 5 842 825 SNPs were qualified in the
meta-analyses and overall genomic control inflation factors for
3 BMD traits ranged from 0.99 to 1.04.

The second GWAS dataset was the meta-analysis from the
Genetic Factors for Osteoporosis Consortium (GEFOS2), the
largest meta-analysis to date in the bone field, including 17
GWASs and 32 961 individuals of European and East Asian
ancestry with the study detailed in an earlier publication (21).
Each SNP and its association to SPN and FN BMD in the
meta-analysis were downloaded from http://www.gefos.
org/?q�content/data-release.

To enrich for potentially functional variants, SNPs with nom-
inal evidence of association in meta-analyses (P � .05) were
taken into account for subsequent network-assisted GWASs. A
SNP was mapped to a human protein-coding gene downloaded
from the NCBI ftp site (Build 36), if it was located within or 20
kb upstream/downstream from the gene (22).

Human PPI network
A comprehensive human PPI dataset was obtained from Goh

et al (10). This dataset consisted of 2 high-quality systematic
yeast 2-hybrid experiments and PPIs obtained from the literature
by manual curation (23, 24). The PPI network included 10 174
nodes (genes) and 61 070 interactions.

Dense module search analysis
Dense module search (DMS) algorithm was applied to GWAS

datasets for module searching and construction. Details of the
DMS algorithm are provided in Ref. 25. The procedures were
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briefly summarized as follows. First, for each gene, a gene-wise
P value was calculated by Simes method using multiple SNPs
mapped to the gene (26, 27). For L SNPs ranked by their P value,
P(1),. . . , P(L), the Simes P value was calculated as min(Lp(i)/i)
where 1 � i � L. As a conservative approach, the Simes method
provided an overall P value for the entire collection of L hypoth-
eses. Gene-wise P values were overlaid to the PPI network to
generate a node-weighted network with each node weighted by
z���1(1�p), where ��1 is the inverse normal cumulative den-
sity function and P is the gene-wise P value. Second, each of the
nodes in the network was taken as a seed gene and obtain a best
scored module by searching for the node with the highest score
in the neighborhood within a distance d (d � 2). Each module
was scored by Zm � �zi/�k, where k is the number of nodes
(genes) in the module. Nodes will be added if the increment is
greater than Zm � r, where r, the rate of proportion increment,
equals 0.1 as suggested in the study (25). That is, the expanded
module had a score Zm � 1 greater than Zm � (1 � r). To adjust
for module size and make modules comparable to each other, the
module score was further normalized by ZN � 	Zm

� mean	Zm	�


/SD(Zm	�
), where Zm	�
 was generated by
randomly selecting the same number of genes in a module from
the whole network 100 000 times. For each module generated in
the discovery dataset, the corresponding P	Zm	eval 

 based on the
gene weights of the same genes in the same module will be also
computed in evaluation dataset. Modules were selected if they
have P	Zm	eval 

 � .05.

Gene expression data processing
Expression data were obtained from 2 in-house gene ex-

pression samples. Both samples were recruited for the purpose
of systemically searching for differentially expression genes
underlying BMD variations. Both datasets consisted of ex-
pression profiles generated from circulating monocytes iso-
lated and purified in subjects with low vs high BMD values.
The first sample (Chinese sample) consisted of 12 unrelated
healthy young Chinese women with low hip BMD and 14
matched unrelated young Chinese women with high hip BMD
(28). The second sample (Caucasian sample) contained 40
unrelated white women with low hip BMD and 40 matched
unrelated white women with high hip BMD (29). The detailed
characteristics of the 2 gene expression samples are shown in
Supplemental Table 1. Both samples were recruited by adopt-
ing the same strict exclusion criteria. Subjects with chronic
diseases and conditions that potentially may affect bone mass
have been excluded from the study. These diseases/conditions
included chronic disorders involving vital organs, serious met-
abolic diseases, skeletal diseases, chronic use of drugs affect-
ing bone metabolism, and malnutrition conditions. Briefly, a
monocyte-negative isolation kit (Dynal Biotech, Inc) was used
to isolate circulating monocytes from 50 mL whole blood, and
then total RNA was extracted from monocytes using a
QIAGEN kit (QIAGEN, Inc). The Chinese sample and Cau-
casian sample used the Affymetrix U-133 Plus 2.0 Gene Chips
and the Affymetrix U-133 A Gene Chips for profiling,
respectively.

First, the raw cell intensity files from both datasets were pro-
cessed by the Affy package in R (30). Second, the robust multi-
array algorithm was used to normalize and generate probe-level
expression data (31). Third, a clustering and principal compo-
nents analysis (PCA) was performed to identify potential outliers

in each dataset by using functions hclust and prcomp in R. For
the Caucasian sample, the first principal component (PC1) ex-
plained 98.45% of the overall variance. After clustering samples
based on global expression values and principal component 1, 3
samples were identified as outliers and therefore removed from
subsequent analysis (Supplemental Figure 1). For the Chinese
sample, 2 outliers were identified and removed. Details are
shown in a previous study (17).

Biological significance of network modules
The biological significance of modules identified by DMS was

evaluated by the gene set enrichment analysis (GSEA) algorithm
in gene expression datasets to determine whether the modules
were associated with BMDs. The GSEA has been a popular tool
for interpreting gene expression data at the gene set level (32).
Modules that showed significant results in both gene expression
datasets (nominal P value � .05) were considered as final can-
didate modules. To gain further insight into the functional sig-
nificance of these final candidate modules, genes in modules were
submitted for gene ontology (GO) term enrichment analysis
based on GO level 4 annotations. A hypergeometric test was imple-
mented in the WebGestalt website (http://bioinfo.vanderbilt.edu/
webgestalt/) (33)tocomputetheenrichmentPvalueforeachGOterm,
adjusted by the Bonferroni method.

Results

An overview of the integrative analysis
framework for network-assisted GWAS and gene
expression

The integrative analysis workflow is shown in Figure 1.
Module discovery was started from Meta7 dataset, fol-
lowed by module evaluation using GEFOS2 dataset. In the
parallel thread, GEFOS2 was used for module discovery
and Meta7 dataset for evaluation. The modules, which
passed the significance criteria in both datasets, were se-
lected as de novo gene sets associated with BMD. The roles
of selected gene sets in the regulation of bone mass were
evaluated by GSEA in 2 independent microarray expres-
sion datasets. For hip BMD, which was not available in the
GEFOS2 dataset, the module discovery was based only on
the Meta7 dataset, and then the modules were evaluated
in both gene expression datasets. Modules significantly
enriched in both gene expression datasets were considered
as final candidate modules. Finally we performed GO en-
richment and pathway analysis using genes merged in final
modules for the characterization of final modules content
and function.

Module identification by integrating GWAS data
and PPI

Using Meta7 as the discovery dataset, a total of 3238
modules were identified for FN BMD. Among these 3238
modules, 37 modules were significant in the GEFOS2 eval-
uation dataset (p	Zm	eval 

 � .05). For SPN BMD, there
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were 3257 modules identified in Meta7 dataset, 111 of
which passed the criteria (p	Zm	eval 

 � .05) in the GEFOS2
dataset. For hip BMD, there were 3340 modules identified
in Meta7. The module size for 3 traits all ranged between
5 and 15, with a median value of 11 for FN BMD and of
10 for both SPN and hip BMD.

Similarly, using GEFOS2 as the discovery dataset, there
were 2693 modules and 2635 modules identified for FN
and SPN BMD, respectively. Among these modules, 5

modules and 18 modules were sig-
nificant in the Meta7 evaluation da-
taset for FN and SPN BMD,
respectively.

In total, 42 modules and 129
modules were identified significantly
in both the Meta7 and GEFOS2 da-
taset for FN and SPN BMD, respec-
tively, and 3340 modules were iden-
tified for hip BMD only in Meta7.
The results are shown in Supplemen-
tal Table 2. As candidate modules,
they were used in the gene expression
dataset for further analysis.

GSEA of modules in gene
expression datasets

GSEA was performed in 2 gene ex-
pression datasets to investigate the
roles of modules mentioned above in
the regulation of BMD. For FN BMD,
1ofthe42modulesshowedsignificant
results only in the Chinese sample’s
low-BMD group. For SPN BMD, 22
of 129 modules were significantly en-
riched in the low-BMD group in the
Chinese sample even after multiple
correction(falsediscoveryrateq-value
�0.05). Interestingly, 1 of these 22

modulesalsohadsignificantresults in low-BMDgroupinthe
Caucasian sample with nominal P value �.05. Similarly, for
hip BMD, there was 1 module of those 3340 modules en-
riched in monocytes from the low-BMD group in both gene
expression datasets (nominal P value �.05). The GSEA re-
sults of the 3 modules above are shown in Table 1. Supple-
mentalTable3 shows the statistics for eachmodule inMeta7
and GEFOS2. Especially, the 2 modules enriched in mono-

Figure 1. The workflow of integration analysis to identify gene modules for BMD.

Table 1. The 3 Modules Selected by GSEA Results in Gene Expression Datasets

Trait Module Genes in the Module
Gene Expression
Sample ESa NESa

NOM P
Valuea

FN 1 SP1, BCL6, ESR1, WNT16,
ESRRA, MEF2C

Caucasian – – –
Chinese �0.779 �1.457 .043

SPN 2b SMAD3, ESR1, DKK1, FN1,
SFRP2, TNFRSF11B,
SMAD9, LRP5, WNT1,
SECISBP2, WNT4

Caucasian �0.583 �1.500 .049
Chinese �0.621 �1.722 .024

Hip 3b MDFI, ESR1, TAP1, DKK1,
LRP5, ZNF408, SFRP1,
EXOSC2, WNT1, WNT4

Caucasian �0.685 �1.618 .023
Chinese �0.657 �1.577 .021

Abbreviations: ES, enrichment score; NES, normalized enrichment score; NOM, nominal. Dashes, not significant.
a Results in low-BMD group.
b Final candidate module.
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cytes of both low-BMD groups were considered as final can-
didate modules (Figure 2), which overlapped in their gene
content and had 16 nonredundant genes.

GO enrichment analysis
Table 2 summarized the results of enrichment analysis

of the 16 module genes. It shows that even after Bonferroni
correction, a number of GO terms still remained signifi-
cantly enriched. Some of these enriched GO terms were
particularly interesting, including the Wnt receptor sig-
naling pathway, regulation of the Wnt receptor signaling
pathway, and osteoblast differentiation.

Discussion

In the present study, we performed a systematic analysis
and identified 2 modules underlying BMD by incorporat-
ing GWASs, human PPI network, and gene expression. We
first adopted a DMS algorithm onto the human PPI net-
work weighted by association signals separately from 2
large meta-analyses of BMD GWASs. Through a discov-
ery-evaluation strategy, a number of modules were con-
sistent in both meta-analysis datasets for 1 specific site of
BMD. Importantly, we were able to validate the biological
relevance of these modules as de novo gene sets in 2 in-
dependent gene expression datasets with high- and low-
BMD subjects. Two final candidate modules were identi-
fied as they were both significantly enriched in both low-
BMD groups of the Chinese and Caucasian samples,
suggesting that they played important roles in bone reg-

ulation. Functional enrichment analysis further revealed
thatbothmoduleswere enriched forgenes involved inWnt
receptor signaling and osteoblast differentiation. From a
system-level analysis above, we highlighted 2 modules as
well as novel genes in the modules playing important roles
in the regulation of bone mass.

The module genes merged from 2 final modules in-
cluded several well-known candidate genes for osteopo-
rosis, such as ESR1, LRP5, and TNFRSF11B (also known
as osteoprotegerin), and it was notable that 8 of the 16
module genes are involved in the Wnt receptor signaling
pathway, including SMAD3, SFRP1, SFRP2, MDFI,
LRP5, WNT1, WNT4, and DKK1. Especially, the last 4
genes were shared by both final candidate modules. Wnt
signaling induces differentiation of bone-forming cells (os-
teoblasts) and suppresses the development of bone-resorb-
ing cells (osteoclasts). Wnt receptor signaling can regulate
osteogenesis by repressing adipocyte differentiation and
promoting the proliferation, expansion, survival, and
mineralization activity of osteoblasts while blocking os-
teoblast apoptosis (34). Wnt signaling represses bone re-
sorption by an osteoprotegerin-independent mechanism
acting directly on osteoclast precursors such as monocytes
(35). Wnt signaling requires the interaction of the LRP5
and frizzled receptors and can be inhibited by Dickkopf
(DKK; an inhibitor of LRP5) and secreted frizzled-related
protein (SFRP), because Dkks and Sfrps antagonize Wnt
signaling in osteoblasts and may downregulate the path-
way in mature cells to induce terminal differentiation (36).
Interestingly, both final candidate modules, which iden-

Figure 2. The 2 final candidate modules for SPN (left) and Hip (right), respectively. The gray color of a node is based on its P value.
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tified though a systems genetics approach, contained
DKK1, LRP5, and SFRP, and interactions among them
regulated the Wnt signaling pathway. It is important to
fully understand the biological relevance of the Wnt sig-
naling pathway with osteoporosis through further mech-
anistic study and therefore find novel therapeutic ap-
proaches to enhance bone formation.

The biggest advantage of the present study was that it
investigated BMD traits from a systems-level perspective by
incorporating a protein-protein interactome with 2 biolog-
ical components, genome and transcriptome. The PPI map,
crucial for all biological processes, provided a better under-
standing of the functional organization of the proteome.
From a systems biology point of view, it helped uncover the
genetic organization principles of the functional cellular net-
work (24). The modules identified in network-assisted
GWASs basically do not have as specific and explicit biolog-
ical function as canonical pathways have. So an important
issue is how to interpret the modules identified and find their
biological evidence associated with diseases. Here, impor-
tantly, the component transcriptome was used to evaluate
the biological roles of the modules. We used monocyte mi-
croarray expression profiles from 2 datasets having subjects

with extremely low or high BMD. One dataset had 26 Chi-
nese subjects, and the other had 80 Caucasian subjects. To
our knowledge, the present study had the largest samples
with expression data on individuals having discordant BMD
values. We used somehow strict criteria in the GSEA results
of 2 gene expression datasets to confirm the biological roles
of modules, because these modules had been already vali-
dated in both meta-analyses (for FN and SPN BMD traits).
Benefiting from such an approach, the present study uncov-
ered interactionsamongDKK1,LRP5, andSFRP in the final
candidate modules. These genes and their interactions had a
great impact on the Wnt signaling pathway, which may
result in loss of bone mass. The integrative approach
provided more insights into biological mechanisms and
important findings for further study into the etiology of
osteoporosis as well as intervention points for its
treatment.

The DMS algorithm that the present study adopted was
successfully applied to complex diseases such as schizo-
phrenia (9) and alcohol dependence (8). It allowed for a
quantitative global search using the association signals.
Other advantages of the present study were as follows.
First, unlike previous studies (8, 9), the present study used

Table 2. GO Enrichment Analysis of Genes in 2 Final Candidate Modules

GO Term Biological Process Overlapped Genes P Valuea
Adjusted P
Valueb

GO:0061053 Somite development SMAD3, WNT1, SFRP1,
WNT4, SFRP2, DKK1

7.43 � 10�11 1.99 � 10�8

GO:0016055 Wnt receptor signaling
pathway

SMAD3, WNT1, SFRP1,
SFRP2, LRP5, MDFI, WNT4,
DKK1

3.53 � 10�10 9.46 � 10�8

GO:0003002 Regionalization SMAD3, WNT1, SFRP1,
SFRP2, LRP5, MDFI, WNT4,
DKK1

4.02 � 10�10 1.08 � 10�7

GO:0060070 Canonical Wnt
receptor signaling
pathway

SMAD3, WNT1, SFRP2, LRP5,
MDFI, WNT4, DKK1

4.11 � 10�10 1.10 � 10�7

GO:0030111 Regulation of Wnt
receptor signaling
pathway

SMAD3, SFRP1, SFRP2, LRP5,
MDFI, WNT4, DKK1

4.44 � 10�10 1.19 � 10�7

GO:0009952 Anterior/posterior
pattern specification

SMAD3, WNT1, SFRP1, LRP5,
WNT4, SFRP2, DKK1

1.09 � 10�9 2.92 � 10�7

GO:0009887 Organ morphogenesis SMAD3, ESR1, TNFRSF1B,
SFRP1, SFRP2, LRP5, MDFI,
WNT1, WNT4, DKK1

1.37 � 10�9 3.67 � 10�7

GO:0060828 Regulation of
canonical Wnt
receptor signaling
pathway

SMAD3, SFRP1, SFRP2, LRP5,
WNT4, DKK1

2.70 � 10�9 7.24 � 10�7

GO:0060562 Epithelial tube
morphogenesis

SMAD3, SFRP1, SFRP2, LRP5,
WNT4, WNT1, ESR1

2.96 � 10�9 7.93 � 10�7

GO:0001649 Osteoblast
differentiation

SMAD3, SFRP1, SFRP2, LRP5,
WNT4, ESR1

4.68 � 10�9 1.25 � 10�6

a Hypergeometric test P value.
b Bonferroni correction-adjusted P value.
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association signals from large-scale meta-analyses, which
can be much more powerful for the detection of more
significant loci. Especially, signals of the genome came
from the 2 largest meta-analyses of BMD for spine, FN,
andhip.One is the largestmeta-analysis todate in thebone
field, including 17 GWASs and 32 961 individuals, and
the other is a newly published meta-analysis of 7 GWAS
samples including 11 140 individuals. We made full use of
both datasets in a bidirectional framework, which pro-
vided robust results with validation. Second, one chal-
lenge was how to compute a gene-based statistical value
from multiple SNPs in a gene to represent its overall as-
sociation signal, which weighted the PPI network. The
most popular method is to directly use the smallest P value
among all SNPs mapped to the gene. However, this easy
implementation will introduce biases because larger genes
are likely to have more significant P values (5). To over-
come this disadvantage, we applied the Simes method
(27), which is a global test applied to multiple SNPs in a
gene jointly, rather than any individual SNP. Because we
had already taken into account the potential biases in the
gene-based P value calculation, a permutation-based test
would not be necessary in the downstream analysis to
adjust for potential biases resulting from SNP density
and/or gene size (5). Third, network-assisted analysis un-
covered several susceptibility genes that may be missed by
conventional approaches. Only LRP5 and TNFRSF11B
in final candidate modules reached genome-wide signifi-
cance level (P � 5 � 10�8). Although other genes, includ-
ing SMAD3, SFRP1, SFRP2, MDFI, WNT1, WNT4, and
DKK1 would not be highlighted by SNP-based GWASs,
they may collectively contribute to BMD susceptibility in
the context of the Wnt signaling pathway as discussed
above. Furthermore, the present study provided several
novel candidate genes in the final modules such as FN1,
SECISBP2, ZNF408, and EXOSC2. For example, study
showed that FN1 is required for osteoblast survival and
immunodetection of FN1 showed its upregulation in dif-
ferentiated osteoblasts compared with their nondifferen-
tiated osteoblasts (37). And ZNF408 was reported in a
meta-analysis of gene-based GWASs to be associated with
hip BMD with a P value of 7.9 � 10�5 (38). Further in-
vestigations are needed to illustrate their roles in the reg-
ulation of BMD.

On the other hand, the present study still had some
limitations. First, as agene-centeredanalysis, thenetwork-
assisted method may still neglect genes that are not rep-
resented in the PPI network. Second, it is difficult and
impractical to examine all possible modules because of the
heavy computation burden. The modules identified by dif-
ferent methods or algorithms may greatly vary (9). Nev-
ertheless, the DMS algorithm used in present study al-

lowed for validation by using another GWAS, making our
findings more convincing. Third, we acknowledge that
there was a lack of evaluation for hip BMD.

In summary, through an integrative analysis of
GWASs, PPI, and gene expression, 2 important modules
were identified to be significantly associated with BMD.
Interestingly, the module genes not only supported pre-
viously reported associations with BMD but also im-
plicated functional components such as the Wnt recep-
tor signaling pathway, regulation of the Wnt receptor
signaling pathway, and osteoblast differentiation.
Therefore, it provided an important clue for further
mechanistic studies to find novel therapeutic ap-
proaches for treatment of osteoporosis.
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